Fate of N in a small reservoir: Insights from sensors & spatial sampling in Mill Pond, Durham NH

Eliza Balch, Gopal Mulukutla, Wilfred M. Wollheim
University of New Hampshire
Contact: wil.wollheim@unh.edu

Motivation

Excess aquatic nitrate (NO₃⁻) leads to estuarine eutrophication and impairment

Reservoirs can attenuate nitrate, but questions remain regarding other nitrogen forms and response to storms

Small, coastal reservoirs are understudied, and may take on wetland characteristics as they fill in, leading to both spatial and temporal heterogeneity that affect N removal capacity

Integrating fixed-site sensor data at the inputs and outputs, and synoptic measurements within the reservoir is a powerful method for understanding biogeochemical patterns.

Conceptual design and methods

Reservoir is a nitrate SINK, including during storm events, but not for TDN

During storm: 40% NO₃ retention
During baseflow: 32% NO₃ retention

However, it is also tends to be a SOURCE for dissolved organic nitrogen, so that for TDN, there is little removal

Reservoir ASSIMILATES nitrate, does not denitrify, and may fix ADDITIONAL nitrogen

There is little evidence that nitrate is permanently removed via denitrification.

Rather, N₂:Ar tends to be undersaturated for N₂ in the reservoir, suggesting N fixation is occurring.

Low dissolved oxygen in the reservoir indicates poor water quality, yet little evidence of denitrification

Integration of sensor and spatial data

Reservoirs are not always nitrogen sinks and may at times be sources of NEW nitrogen

Sensors capture temporal variation, while synoptic sampling captures spatial variation.

Conclusions

Removal of Mill Pond dam is unlikely lead to an increase in nitrogen loading to the Great Bay

Removal of Mill Pond will lead to different types of nitrogen reaching Great Bay.
- Less nitrate, but more dissolved organic nitrogen
- Because this DON was produced in the reservoir, it is likely to be reactive (labile) when it enters Great Bay

Acknowledgements

Support for this research came from the EPA Low-Cost Sensor Challenge, NH Agricultural Experiment Station, NH EPSCoR and New Hampshire SeaGrant. Assistance with data collection and analysis was provided by Gopal Mulukutla, Alexandra Evans, Maggie Phillips, Bonnie Turek, Drew Robison, Chris Whitney